PIC Vietnam

Go Back   PIC Vietnam > Robotics > Matlab-Simulink & Labview & 20-Sim

Tài trợ cho PIC Vietnam
Trang chủ Đăng Kí Hỏi/Ðáp Thành Viên Lịch Bài Trong Ngày Vi điều khiển

Matlab-Simulink & Labview & 20-Sim Các công cụ mô phỏng đa ngành...

 
 
Ðiều Chỉnh Xếp Bài
Prev Previous Post   Next Post Next
Old 30-03-2006, 10:58 PM   #1
ami
Đệ tử 9 túi
 
ami's Avatar
 
Tham gia ngày: Jul 2005
Nơi Cư Ngụ: Grenoble - FRANCE
Bài gửi: 38
:
Kalman filter: tutorial function

Mặc dù matlab đã có các toolbox hỗ trợ bộ lọc Kalman, nhưng mình vẫn post lên đây với 2 mục đích: để các bạn nắm rõ cơ chế hoạt động của một bộ lọc Kalman đơn giản, và từ đó có thể xây dựng một bộ lọc Kalman theo ý thích và mục tiêu sử dụng.

Với những đề tài cụ thể ( như mình làm việc với cảm biến về hướng) , các giáo viên hướng dẫn đều khuyên mình dựa vào Kalman của Matlab để xây dựng toolbox cho mình.

p/s: sourcecode này không phải do mình viêt


% KALMANF - updates a system state vector estimate based upon an
% observation, using a discrete Kalman filter.
%
% Version 1.0, June 30, 2004
%
% This tutorial function was written by Michael C. Kleder
%
% INTRODUCTION
%
% Many people have heard of Kalman filtering, but regard the topic
% as mysterious. While it's true that deriving the Kalman filter and
% proving mathematically that it is "optimal" under a variety of
% circumstances can be rather intense, applying the filter to
% a basic linear system is actually very easy. This Matlab file is
% intended to demonstrate that.
%
% An excellent paper on Kalman filtering at the introductory level,
% without detailing the mathematical underpinnings, is:
% "An Introduction to the Kalman Filter"
% Greg Welch and Gary Bishop, University of North Carolina
% http://www.cs.unc.edu/~welch/kalman/kalmanIntro.html
%
% PURPOSE:
%
% The purpose of each iteration of a Kalman filter is to update
% the estimate of the state vector of a system (and the covariance
% of that vector) based upon the information in a new observation.
% The version of the Kalman filter in this function assumes that
% observations occur at fixed discrete time intervals. Also, this
% function assumes a linear system, meaning that the time evolution
% of the state vector can be calculated by means of a state transition
% matrix.
%
% USAGE:
%
% s = kalmanf(s)
%
% "s" is a "system" struct containing various fields used as input
% and output. The state estimate "x" and its covariance "P" are
% updated by the function. The other fields describe the mechanics
% of the system and are left unchanged. A calling routine may change
% these other fields as needed if state dynamics are time-dependent;
% otherwise, they should be left alone after initial values are set.
% The exceptions are the observation vectro "z" and the input control
% (or forcing function) "u." If there is an input function, then
% "u" should be set to some nonzero value by the calling routine.
%
% SYSTEM DYNAMICS:
%
% The system evolves according to the following difference equations,
% where quantities are further defined below:
%
% x = Ax + Bu + w meaning the state vector x evolves during one time
% step by premultiplying by the "state transition
% matrix" A. There is optionally (if nonzero) an input
% vector u which affects the state linearly, and this
% linear effect on the state is represented by
% premultiplying by the "input matrix" B. There is also
% gaussian process noise w.
% z = Hx + v meaning the observation vector z is a linear function
% of the state vector, and this linear relationship is
% represented by premultiplication by "observation
% matrix" H. There is also gaussian measurement
% noise v.
% where w ~ N(0,Q) meaning w is gaussian noise with covariance Q
% v ~ N(0,R) meaning v is gaussian noise with covariance R
%
% VECTOR VARIABLES:
%
% s.x = state vector estimate. In the input struct, this is the
% "a priori" state estimate (prior to the addition of the
% information from the new observation). In the output struct,
% this is the "a posteriori" state estimate (after the new
% measurement information is included).
% s.z = observation vector
% s.u = input control vector, optional (defaults to zero).
%
% MATRIX VARIABLES:
%
% s.A = state transition matrix (defaults to identity).
% s.P = covariance of the state vector estimate. In the input struct,
% this is "a priori," and in the output it is "a posteriori."
% (required unless autoinitializing as described below).
% s.B = input matrix, optional (defaults to zero).
% s.Q = process noise covariance (defaults to zero).
% s.R = measurement noise covariance (required).
% s.H = observation matrix (defaults to identity).
%
% NORMAL OPERATION:
%
% (1) define all state definition fields: A,B,H,Q,R
% (2) define intial state estimate: x,P
% (3) obtain observation and control vectors: z,u
% (4) call the filter to obtain updated state estimate: x,P
% (5) return to step (3) and repeat
%
% INITIALIZATION:
%
% If an initial state estimate is unavailable, it can be obtained
% from the first observation as follows, provided that there are the
% same number of observable variables as state variables. This "auto-
% intitialization" is done automatically if s.x is absent or NaN.
%
% x = inv(H)*z
% P = inv(H)*R*inv(H')
%
% This is mathematically equivalent to setting the initial state estimate
% covariance to infinity.
%
% SCALAR EXAMPLE (Automobile Voltimeter):
%
% % Define the system as a constant of 12 volts:
% clear s
% s.x = 12;
% s.A = 1;
% % Define a process noise (stdev) of 2 volts as the car operates:
% s.Q = 2^2; % variance, hence stdev^2
% % Define the voltimeter to measure the voltage itself:
% s.H = 1;
% % Define a measurement error (stdev) of 2 volts:
% s.R = 2^2; % variance, hence stdev^2
% % Do not define any system input (control) functions:
% s.B = 0;
% s.u = 0;
% % Do not specify an initial state:
% s.x = nan;
% s.P = nan;
% % Generate random voltages and watch the filter operate.
% tru=[]; % truth voltage
% for t=1:20
% tru(end+1) = randn*2+12;
% s(end).z = tru(end) + randn*2; % create a measurement
% s(end+1)=kalmanf(s(end)); % perform a Kalman filter iteration
% end
% figure
% hold on
% grid on
% % plot measurement data:
% hz=plot([s(1:end-1).z],'r.');
% % plot a-posteriori state estimates:
% hk=plot([s(2:end).x],'b-');
% ht=plot(tru,'g-');
% legend([hz hk ht],'observations','Kalman output','true voltage',0)
% title('Automobile Voltimeter Example')
% hold off

function s = kalmanf(s)

% set defaults for absent fields:
if ~isfield(s,'x'); s.x=nan*z; end
if ~isfield(s,'P'); s.P=nan; end
if ~isfield(s,'z'); error('Observation vector missing'); end
if ~isfield(s,'u'); s.u=0; end
if ~isfield(s,'A'); s.A=eye(length(x)); end
if ~isfield(s,'B'); s.B=0; end
if ~isfield(s,'Q'); s.Q=zeros(length(x)); end
if ~isfield(s,'R'); error('Observation covariance missing'); end
if ~isfield(s,'H'); s.H=eye(length(x)); end

if isnan(s.x)
% initialize state estimate from first observation
if diff(size(s.H))
error('Observation matrix must be square and invertible for state autointialization.');
end
s.x = inv(s.H)*s.z;
s.P = inv(s.H)*s.R*inv(s.H');
else

% This is the code which implements the discrete Kalman filter:

% Prediction for state vector and covariance:
s.x = s.A*s.x + s.B*s.u;
s.P = s.A * s.P * s.A' + s.Q;

% Compute Kalman gain factor:
K = s.P*s.H'*inv(s.H*s.P*s.H'+s.R);

% Correction based on observation:
s.x = s.x + K*(s.z-s.H*s.x);
s.P = s.P - K*s.H*s.P;

% Note that the desired result, which is an improved estimate
% of the sytem state vector x and its covariance P, was obtained
% in only five lines of code, once the system was defined. (That's
% how simple the discrete Kalman filter is to use.) Later,
% we'll discuss how to deal with nonlinear systems.

end

return
__________________
Không béo bề ngang thì cũng bổ bề dọc
Không bổ cho ruột non thì cũng bổ ruột ...
ami vẫn chưa có mặt trong diễn đàn   Trả Lời Với Trích Dẫn
 


Quyền Sử Dụng Ở Diễn Ðàn
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is Mở
Smilies đang Mở
[IMG] đang Mở
HTML đang Tắt

Chuyển đến

Similar Threads
Ðề tài Người gửi Chuyên mục Trả lời Bài mới
Bộ lọc Kalman dùng PIC falleaf RTOS và Thuật toán với PIC 19 30-01-2014 08:19 PM
Bộ lọc Kalman falleaf Điều khiển 70 03-07-2013 12:03 AM
Tutorial LCD cua Nigel??????? spirit Cơ bản về vi điều khiển và PIC 16 16-03-2009 05:32 PM
cần giúp gấp về các nguồn cung cấp asm code IIR filter cho DSP56K Motorola bachelor1979 Trao đổi ngoài luồng 2 25-06-2006 10:24 PM
tutorial hay cho newbie FUD84 Cơ bản về vi điều khiển và PIC 2 04-12-2005 02:29 AM


Múi giờ GMT. Hiện tại là 11:52 AM.


Được sáng lập bởi Đoàn Hiệp
Powered by vBulletin®
Page copy protected against web site content infringement by Copyscape
Copyright © PIC Vietnam