View Single Post
Old 23-03-2006, 11:07 PM   #5
falleaf
PIC Bang chủ
 
falleaf's Avatar
 
Tham gia ngày: May 2005
Bài gửi: 2,631
:
Send a message via Yahoo to falleaf
Điều khiển tối ưu

1. Cơ bản về lý thuyết điều khiển tuyến tính

Trong phần này, có lẽ F sử dụng cuốn textbook mà F học đó là cuốn "Linear Optimal Control System" của hai tác giả Huibert Kwakernaak và Raphael Sivan - nhà xuất bản Wiley Interscience.
Các bạn có thể tìm mua cuốn sách này tại nhà sách Xuân Thu - HCMC, của nhà xuất bản Wiley & Sons (chỉ bán cho các nước đang phát triển).

1.1. Giới thiệu

Như đã giới thiệu trong phần điều khiển bền vững, lịch sử ra đời của bộ điều khiển tối ưu, và những khúc mắc của nó. Tuy điều khiển tối ưu, tính ứng dụng trong thực tế của nó không cao, nhưng để hiểu về các hệ điều khiển, và để nghiên cứu một cách lý thuyết, cũng như để phát triển các mô hình, thì người ta vẫn nghiên cứu điều khiển tối ưu trong các trường đại học và viện nghiên cứu.J_u[x_0(t), u_0(t), t]

Các bạn xem bài giới thiệu sơ bộ tại luồng này
http://www.picvietnam.com/forum//showthread.php?t=343

Như đã nói, điều khiển hiện đại, một phần quan trọng trong đó là điều khiển tối ưu, nó dựa trên việc mô hình hoá các đối tượng điều khiển và hệ thống điều khiển bằng các phương trình biến trạng thái (State Space Representation - SSR).

1.2. Mô tả trạng thái của các hệ tuyến tính và phi tuyến

1.2.1. Phương trình biến trạng thái

Phần này, nghiễm nhiên cuốn sách cho rằng các bạn đã học rồi, cho nên chúng ta chỉ điểm sơ lại, đó là một hệ thống có thể được mô tả bằng phương trình biến trạng thái với dạng như sau:

/d x(t) = f[x(t), u(t), t]
y(t) = g[x(t), u(t), t]

Và chúng ta có một dạng khác của hệ thống mà chúng ta quen thuộc hơn, đó là (khi chúng ta coi hệ thống là tuyến tính).

/d x(t) = A(t)x(t) + B(t)u(t)
y(t) = C(t)x(t) + D(t)u(t)

Trong cuốn sách mà F đề cập, thì người ta cũng chỉ khảo sát các hệ thống tuyến tính mà thôi. Còn các hệ thống không tuyến tính thì sao? Người ta sẽ nghĩ đến chuyện tuyến tính hoá hệ thống. Phải, đó là tuyến tính hoá hệ thống phi tuyến để trở thành hệ thống tuyến tính, sau đó người ta tìm cách làm việc trên hệ thống tuyến tính.

Đó là cách cuốn sách này giới thiệu đến các bạn.

1.2.2. Tuyến tính hoá

Mục đích của phần này là chỉ ra rằng, nếu u_0(t) là một ngõ vào cho trước của hệ thống, được mô tả bằng phương trình trạng thái

/d x(t) = f[x(t), u(t), t] (*)

chúng ta có thể tìm xấp xỉ gần đúng cho một sai lệch nhỏ trong trại thái ban đầu và sai lệch nhỏ của ngõ vào, như sau.

Cho rằng:

x_0(t) = f[x_0(t), u_0(t), t] t_0 <= t <= t_1

Cũng giống như là chúng ta có nghiệm đặc biệt của phương trình trạng thái vậy, nhưng một cách lý thuyết, người ta gọi x_0, u_0 là các điều kiện danh nghĩa (nominal condition) của hệ thống. Chúng ta có thể cho rằng, hệ thống sẽ hoạt động xung quanh điều kiện này. Khi đó, chúng ta có thể viết:

u(t) = u_0(t) + ~u(t) (ngõ vào)
x(t_0) = x_0(t_0) + ~x(t_0) (điều kiện ban đầu của phương trình trạng thái)

Trong đó ~u(t) và ~x(t_0) là những sai lệch nhỏ so với điều kiện danh nghĩa nêu trên. Cũng tương tự như vậy, chúng ta có:

x(t) = x_0(t) + ~x(t) (biến trạng thái)

Đưa vào phương trình (*) và khai triển Taylor, chúng ta sẽ có:

/d x_0(t) + /d ~x(t) = f[x_0(t), u_0(t), t] + J_x[x_0(t), u_0(t), t] + J_u[x_0(t), u_0(t), t] +h(t)

Trong đó, J_x và J_u là các ma trận Jacobi của x và u

(J_x){i,j} = df_i/dx_j
(J_u){i,j} = df_i/du_j

và h(t) là một thành phần rất bé trong khai triển Taylor của x và u. Khi đó, nếu bỏ qua thành phần h(t) thì chúng ta sẽ có phương trình trạng thái tuyến tính có dạng:

/d ~x(t) = A(t)~x(t) + B(t)~u(t) (**)

Trong đó
A(t) =J_x[x_0(t), u_0(t), t]
B(t) = J_u[x_0(t), u_0(t), t]

Chúng ta gọi (**) là phương trình vi phận trạng thái được tuyến tính hóa. Điều kiện ban đầu của phương trình biến trạng thái này sẽ trở thành ~x(t_0) , xuất phát từ điều kiện đầu ở trên x(t_0) = x_0(t_0) + ~x(t_0).

Như vậy chúng ta vừa xem xong phần cơ bản về tuyến tính hoá phương trình biến trạng thái.

Phần tiếp theo, có lẽ F sẽ đưa ra ví dụ trong sách để các bạn dễ hình dung hơn về cái phần lý thuyết nhập nhằng này.

Tóm lại một điều, bạn nào chưa nắm về lý thuyết điều khiển cơ bản (tuyến tính) và chưa quen với các phương trình biên trạng thái thì nói chung là không nên xem phần này, nó lằng nhằng lắm.

Thực ra lúc trước F học, cũng chỉ đơn giản thôi, có 3,4 cách giải bài toán gì đó trong điều khiển tối ưu, nhưng cũng mấy tháng rồi không coi, nên giờ phải viết lại từ đầu, và theo một khoá học hiện nay F đang học lại. Có lẽ F sẽ nhờ bạn F cung cấp tài liệu thêm về phần này, vì tài liệu cũ đi nhanh hơn tài liệu F đang trình bày với các bạn hiện giờ.

Ngoài ra, về điều khiển tối ưu, F cũng không rành cho lắm, chỉ mở màn để mời những người chuyên hơn về điều khiển tham gia viết tiếp thôi. Nếu bạn nào đang nghiên cứu về phần điều khiển tối ưu, mong các bạn tiếp tục xây dựng các bài học này.

Trên trang www.dieukhien.net các anh Hùng và thevane đang tổ chức lớp học online về điều khiển và đi sâu về lý thuyết, các bài viết trên đó rất hay, các bạn có thể tham khảo. Tuy nhiên, phần này vẫn chưa thấy các anh trình bày, có lẽ chưa có thời gian để viết hết tất cả, vì trang web mới được xây dựng. Sắp tới, ở đó sẽ tập trung khá nhiều tài liệu và chuyên về điều khiển.

Các bạn nên chú ý theo dõi nếu quan tâm về vấn đề điều khiển.

Chúc vui.
falleaf vẫn chưa có mặt trong diễn đàn   Trả Lời Với Trích Dẫn