4.5. Phân bố đơn vị
Phần này chẳng có gì đặc biệt, các bạn đọc thêm tài liệu ở các sách như cuốn F đã giới thiệu
4.6. Phân bố Gauss và phân bố chuẩn
Đây là vấn đề cần nhắc lại, nhưng vị nhắc cái đoạn này thì nó mất thời gian vẽ lại hình, cho nên F tạm thời không vẽ lại hình, F chỉ đưa ra lại công thức để nhắc lại thôi. Nếu có bạn nào cũng tham gia đọc theo tài liệu này, mong các bạn dành thời gian viết một vài điều về phân bố Gauss ở đây dùm F cái.
f_X(x) = \frac{1}{sqrt{2*\pi}*\sigma}exp(-\frac{1}{2\sigma^2}(x-m_x)^2)
Trong đó ký hiệu \frac{tử số}{mẫu số} = tử số / mẫu số
4.7. Trung bình
E(X) = \bar X (X gạch trên đầu) =~ (dấu bằng hình thức) \int_{-\inf}^{+\inf}{x*f_X(x)dx}
trong đó \inf = dấu vô cùng, đây là tích phân từ trừ vô cùng đến cộng vô cùng của tích x*f_X(x)
Bây giờ, chúng ta xem một thí dụ sau, trong một cái hộp kín, có 2 trái banh, tìm trung bình của số lần bốc được trái banh A.
Như vậy nếu chúng ta bốc trái banh ra 100 lần, có phải là chúng ta sẽ có
E = 1/100 (X(1) + X(2) + ... X(100))
Trong đó X(i) = 1 nếu như bốc được banh A, và X(i) = 0 nếu bốc được banh B.
Điều này không có gì lạ. Nhưng với quy luật ngẫu nhiên vừa rồi, thì có phải nếu chúng ta bốc 1000 lần, 100000000000...0000 lần, thì kết quả E sẽ tiến gần đến 1/2 phải vậy không?
Như vậy, có nghĩa là cái dấu =~ (bằng hình thức) ở công thức trên nói với chúng ta rằng, nếu như số lần lấy mẫu tiến ra vô cùng, thì xác suất mới có giá trị đúng.
Và F có một cái câu rất hay nói ngoài miệng khi quyết định một cái chuyện gì đó rằng: "Xác suất chỉ có ý nghĩa khi nó tiến ra vô cùng" để khẳng định rằng, mọi việc F làm ngày hôm nay đều đúng, bởi vì rằng khi quyết định làm gì, chúng ta chỉ có thể quyết định một lần. Chỉ khi nào nói rằng quyết định của chúng ta là đúng hay sai khi chúng ta có thể quyết định nhiều lần và quan sát được nó. Nhưng thời gian không cho phép quyết định được lặp lại, cho nên, nếu như đã có ý quyết định, thì hãy tin rằng mình quyết định đúng, bởi vì quyết định một lần, không bao giờ có khái niệm đúng hay là sai...
Hơi triết lý một chút, nhưng chúng ta tiếp tục vấn đề.
Chứng mình trung bình E[X] của phân phối chuẩn -1<= X <=1 là bằng 0
Chứng minh như sau:
E[X] = \int_{-1}^1{x*f_X(x)dx} = \int_{-1}^1{x*1/2dx}
=1/2*(1/2*x^2)|-1..1 = 0
Oki, như vậy, để bữa nào F vẽ cái hình phân bố chuẩn hay Gaussian lại cho các bạn xem. Thì các bạn sẽ thấy nó đối xứng, và nếu như nó đối xứng qua điểm 0 thì trung bình của nó phải là 0.
Oki, tạm dừng ở đây, các bạn về đọc tiếp nội dung của xác suất thống kê nhé... Thiệt tình phần này nếu viết thì dài, mà không viết thì không được, nên chỉ lướt lướt qua những điểm cần ôn và chú ý, chứ không thể đi hết được.
Chúc vui.
|